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Algorithmic fairness: why?

We live in  a world where decisions are assisted or even taken by 
algorithmic systems driven by large amounts of data.

Who to date?
From simple, or not that 
simple, personal ones

Where to eat?

What are the news?

What to read, watch, buy..?
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Get informed .. What does this mean?

What job to take? What school to attend? Who to follow? …? ..?



Algorithmic fairness: why?
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We live in  a world where decisions are assisted or even taken by 
algorithmic systems driven by large amounts of data.

And not just at a personal level

▪ Insurance, Credit
▪ Housing
▪ Pricing of goods and services
▪ Education, school admission
▪ Law enforcement, sentencing decisions
▪ Job recruitment
▪ …

Raise concerns regarding how much can/should we trust such systems?



Case Studies: Image Search

What images do people choose to represent careers? 
E.g., percentage of images portraying women in image search for professions
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Case Studies: Image Search

In search results [KMM15]:
▪ evidence for stereotype exaggeration
▪ systematic underrepresentation of women (compared with the actual 

percentage as estimated by the US bureau of labor and statistics)

▪ People rate search results higher when they are consistent with stereotypes for 
a career

▪ Shifting the representation of gender in image search results can shift people’s 
perceptions about real-world distributions. (after search slight increase in their believes)
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Case Studies: COMPAS

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions): Commercial tool that 
uses a risk assessment algorithm to predict some categories of future crime 

Used in courts in the US for bail and sentencing decisions

ProPublica found that 
▪ the false positive rate (i.e., people labeled "high-risk" who 

did not re-offend) for African American defendants nearly 
twice as high as for White defendants

▪ Opposite for false negative rate

The Wisconsin Supreme Court defended the use of COMPAS 
to inform criminal sentencing decisions
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And many more

The importance of being Latanya [S13]
Names used predominantly by men and women of color  are much more likely to generate 
ads related to arrest records, than names used predominantly by white men and women.

Adfisher: tool that automate the creation of demographic and behavioral profiles
▪ setting gender = female results in less ads for high-paying jobs (google ads)

In word embeddings: Man is to Computer Programmer as Woman is to 
Homemaker [BCZ+16]
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What is the cause: Data

▪ Correctness and completeness Garbage in, garbage out (GIGO)
▪ Poorly selected 
▪ Incomplete
▪ Incorrect
▪ Outdated
▪ Selected with bias

▪ Data as a social mirror: perpetuating and promoting historical biases

▪ Sample size disparity
▪ learn on majority (Errors concentrated in the minority class)
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What is the cause: Algorithms

▪ Algorithms as black boxes

▪ Output models that are hard to understand

▪ Unrealistic assumptions

▪ Algorithms that do not compensate for input data problems

▪ Decision making systems that assume correlation implies causation

▪ BIAS REINFORCEMENT CYCLE
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Tutorial outline

PART 1 (this talk) (~10 min)
Motivation
Introduction to Fairness

PART 2  (~20 min)
Fairness in Ranking

PART 3  (~20 min)
Fairness in Recommenders

PART 4  (~10 min)
Fairness in Other Systems and Conclusions
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Fairness 
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Definition

Fairness: lack of discrimination

Protected attributes: the output should not depend on the values of these 
attributes, differences should be explained by other attributes (features)

Two general approaches [DSV+12]
▪ Individual fairness
▪ Group fairness
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Individual fairness

Similar people should be treated similarly

Let V be a set of individuals. Define a task-specific distance metric d: V x V -> R [DSV+12]
▪ Task-specific
▪ Expresses ground truth (or, best available approximation)
▪ Public, open to discussion and refinement
▪ Externally imposed, e.g., by a regulatory body, or externally proposed, e.g., by a civil rights organization

Similarity of  individuals
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Individual fairness 

Assume a classifier M that maps individuals 
V to outcomes A
Randomized mapping from individuals to 
probability distributions over outcomes
● To classify x ∈ V, we choose an 

outcome a ∈ A according to 
distribution M(x)
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Similarity of  treatment

Depends on the algorithm

Lipschitz Mapping: a mapping M: V -> Δ(Α) satisfies 
the (D, d)-Lipschitz property, if for every x, y ∈ V,                                                     
𝐷 𝑀 𝑥 −𝑀 𝑦 ≤ 𝑑 𝑥, 𝑦 where D is a distance 
measure between probability distributions



Group Fairness

Individuals divided into groups based on the value of one or 
more  protected attribute 

Assume one  binary protected attribute S with  1 being the privileged value, two 
groups:
▪ Non protected (privileged) group, S = 1
▪ Protected (minority) group, S ≠ 1 
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All groups should  be treated similarly



Group Fairness in classification

Binary outcome Y,  
Predicted binary outcome 𝑌
yes the favorable outcome

Is this output fair?
Color the protected attribute
Red the protected group

Dataset D
𝑌 = Yes

𝑌 = No

Predicted Outcome
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Similarity of  treatment
Depends on the algorithm



Blindness is not enough
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Blindness (hiding the value of the protected 
attribute) does not work

Redundant encoding, (or, proxies) the protected 
attribute may be correlated with other attributes



Disparate treatment vs disparate impact

Disparate treatment
▪ Illegal practice of treating an entity differently based on a protected characteristic 

such as race, gender, age, religion, sexual orientation
Disparate impact
▪ Outcome depends on the protected attribute even if people are treated the same way

Disparate impact doctrine solidified in the US after [Griggs v. Duke Power Co. 1971] 
where a high school diploma was required for unskilled work, excluding black 
applicants (non-job related training)

Discrimination Based on Redundant Encoding
Redlining: the practice of arbitrarily denying or limiting financial services to specific   neighborhoods, 
generally because its residents are people of color or are   poor.“, well-known form of discrimination based 
on redundant encoding. Illegal in the US
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Non-discrimination and equality of opportunity

▪ Non-discrimination seeks to allocate resources in a way that
does not consider irrelevant attributes

▪ Equality of opportunity seeks to correct a historical or
present disadvantage for a group.
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Group Fairness in classification

Basic types of group fairness, based on [FSV+19]
▪ Base rates
▪ Group-conditioned accuracy
▪ Group-conditions calibration
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Group fairness: base rates

Compare the probability of a favorable outcome for the non-protected group

with the probability of a favorable outcome for the protected group
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 ≠ 1]

Both conditional probabilities evaluated on D.

Possible formulations:

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 1]

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 ≠ 1]
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 1]

1 − (𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 1] − 𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 ≠ 1])
23

Ratio  [ZWS+13, FFM+15]

Difference  [CV10]



Group fairness: base rates

demographic parity (statistical parity)
Preserves the input ratio: the demographics of the individuals receiving a favorable 
outcome the same as demographics of the underlying population

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 ≠ 1]
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 1]

= 1
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Group fairness: base rates

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 𝑟𝑒𝑑] = 2/5

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 𝑏𝑙𝑢𝑒] = 4/10
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 𝑟𝑒𝑑]
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 𝑏𝑙𝑢𝑒]

= 1

5
15

10
15

Blue
nodes

Red 
nodes

Demographic parity

Dataset D

𝑌 = Yes

𝑌 = No

Predicted Outcome
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Group fairness: base rates

𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 ≠ 1]
𝑃 𝑌 = 𝑦𝑒𝑠 𝑆 = 1]

≤ 𝜏

Disparate impact (unintended discrimination) [FFM+15], τ = 0.8 based on a generalization 
of the 80 percent rule advocated by the US Equal Employment Opportunity Commission 
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Group fairness: criticism

Ignores utility/goodness of the individuals in the group

Self-fulfilling prophecy
Deliberately choosing the “wrong" members of the protected group in order to build a bad “track 
record" for the group

Reverse tokenism
Deny access to a qualified member of the privileged group
Goal is to create convincing refutations 
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Other definitions of fairness

28

Group based
▪ Classification-accuracy based ones: Consider the performance of the classifier, 

for example whether the classification errors for each group are similar

▪ Calibration-based ones: Probabilistic classifiers: output the probability that an 
individual belongs to the positive class,  probability estimates should be well-
calibrated for both groups (e.g, KMR17])

Counterfactual fairness [KLR+17]:
A decision is fair towards an individual, if it is the same in both the actual world 
and a counterfactual world where the individual belonged to a different 
demographic group. (using casual inference)
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         Fairness in Ranking



Fairness in ranking

▪ In many applications, the output is a ranked list where items are 
ordered  in descending order of some measure of the relative quality 
of the items o E.g., Search engines, job search applications, News feeds, 

recommendations, etc

o Most often, the measure of quality, or the utility of an item, is 
the relevance of the item to the input query 

o Commonly expressed with a relevance score,  (or, pairwise 
preference relation)

Formally, given a set items {i1, i2, … iN},  a ranking is an 
assignment (mapping) of items to ranking positions

Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15
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Fairness in ranking

▪ Position bias: People tend to “see” only  few top results

Fairness in ranking (in a nutshell):  
• Individual: Items with similar relevance scores 

should receive similar “visibility” 
• Group: All groups should receive similar 

“visibility”

Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15
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Let us see how these notions have been formalized



Fairness constraints 

Fairness constraints [CSV18]: Given a number of protected attributes, or, 
properties, 
as an upper bound   and  a lower bound   on the number of items with 
property l that are allowed to appear in the top k positions of the ranking

𝑼𝒍𝒌 𝑳𝒍𝒌
Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15

!  = 1: At least 1 item with 
property red in the top-4 
positions

𝐿𝑟𝑒𝑑 4
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Discounted cumulative fairness 

Metrics are inspired by Discounted Cumulative Gain (DCG) commonly 
used to evaluate the quality in information retrieval 

𝐷𝐶𝐺𝑝(𝑟) =  𝑟𝑒𝑙1 +  
𝑝

∑
𝑖=2

𝑟𝑒𝑙𝑖

𝑙𝑜𝑔2(𝑖 + 1)

𝑁𝐷𝐶𝐺𝑝(𝑟) =
𝐷𝐶𝐺𝑝(𝑟)

𝑜𝑝𝑡_𝐷𝐶𝐺𝑝

▪ Focus on the representation (i.e., number of items) of the protected group in the top-p 
ranking positions for various values of p.  

▪ Set based

DGC: Values are accumulated at discrete points in the 
ranking with a logarithmic discount

Normalized DCG (NDGC)

Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15

𝐷𝐺𝐶4(r) = 0.56 + 0.55
𝑙𝑜𝑔2(3) + 0.45

𝑙𝑜𝑔2(4) + 0.44
𝑙𝑜𝑔2(5)
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Discounted cumulative fairness

Let !  be the protected and  be the non protected group. Three metrics [YS17]𝐺+ 𝐺− 

Normalized discounted difference (rND)

Accumulate the number of items belonging to the 
protected group at discrete positions in the ranking 
(e.g., p =10, 20, …) and  discount these numbers 
according (it is better to have many protected 
items in higher positions) 

𝑟𝑁𝐷(𝑟) = 1
𝑜𝑝𝑡_𝑟𝑁𝐷

𝑁

∑
𝑝=10,20,..

1
𝑙𝑜𝑔2 (𝑝)

|𝐺+
1, ..𝑝 |
𝑝

− |𝐺+ |
𝑁

Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15

p = 5

p = 10

!  

!

1
𝑙𝑜𝑔2(5)

2
5 − 4

10 +

1
𝑙𝑜𝑔2(10)

4
10 − 4

10  7



Discounted cumulative fairness

Normalized discounted difference (rND)

Again, we accumulate the number of items belonging to the protected group at discrete positions in the 
ranking (p =10, 20, …) and  discount these accordingly, only difference in the denominator

𝑟𝑅𝐷(𝑟) = 1
𝑜𝑝𝑡_𝑟𝑁𝐷

𝑁

∑
𝑝=10,20,..

1
𝑙𝑜𝑔2 (𝑝)

|𝐺+
1, ..𝑝 |

|𝐺−
1, ..𝑝 |

− |𝐺+ |
|𝐺− |

Normalized discounted ratio (rRD)

𝑟𝑁𝐷(𝑟) = 1
𝑜𝑝𝑡_𝑟𝑁𝐷

𝑁

∑
𝑝=10,20,..

1
𝑙𝑜𝑔2 (𝑝)

|𝐺+
1, ..𝑝 |
𝑝

− |𝐺+ |
𝑁

Normalized discounted KL divergence (rKL)
use KL-divergence to compute the expectation of the difference between the membership probability 
distribution of  the protected group at top-p positions (for p = 10, 20, ..) and in the  over-all population
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Fairness of exposure

Counting items at discrete positions does not fully capture the fact that: 

minimal differences in relevance scores may translate into large 
differences in visibility/exposure for different groups  because of position 
bias that results in a large skew in the distribution of exposure.

 9



Fairness of exposure 

Fairness of exposure [SJ18]

Probabilistic ranking of N items in N positions modeled as a 
doubly stochastic NxN  matrix P,  where  is the 
probability that item i is ranked at position j.

𝑃𝑖,𝑗 

Position discount vector v to capture position bias 
vj represents the importance of position j (i.e., the fraction of users that 
examine an item at position j.)

0.42

0.28

..

0.08

..

0.00001

1

2

..

j

..

N

vPosition

Importance of 
position j

Item

Position

i

j

probability i is 
ranked at position j𝑃𝑖,𝑗 Probabilistic ranking P Position discount vector v
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Fairness of exposure 

Item exposure

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑖 |𝑃 ) =
𝑁

∑
𝑗=1

𝑃𝑖,𝑗𝑣𝑗

Group exposure 𝐺𝑘 
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺𝑘 𝑃) = 1

|𝐺𝑘 | ∑
𝑖∈𝐺𝑘

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝑖 |𝑃 )

0.42

0.28

..

0.08

..

0.00001

1

2

..

j

..

N

vPosition

Importance of 
position j

Position discount vector v

Item

Position

i

j

probability i is 
ranked at position j

𝑃𝑖,𝑗 Probabilistic ranking P
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Fairness of exposure

Demographic parity
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺𝑜 |𝑃 )
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺1 |𝑃 ) = 1

Disparate treatment

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺𝑜 |𝑃 )
𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝐺0 |𝑞) = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺1 |𝑃 )

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝐺1 |𝑞)
▪ the exposures (treatments)  for 

the two groups are proportional 
to their average utility

▪ the two groups get the 
same average exposure

Disparate impact
▪ the impact (clickthrough rate 

(CTR) which depends on exposure 
and relevance) for the two groups 
are proportional to their average 
utility

𝐶𝑇𝑅(𝐺𝑜 |𝑃 )
𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝐺0 |𝑞) = 𝐶𝑇𝑅(𝐺1 |𝑃 )

𝑈𝑡𝑖𝑙𝑖𝑡𝑦(𝐺1 |𝑞)
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Equity of attention [BGW18]

▪ An idea similar to fairness of exposure but for individual items

Equity of attention: each item i receives attention a (i.e., views, 
clicks) that is proportional to its relevance rel in a given query

𝑎1
𝑟𝑒𝑙1

=   𝑎2
𝑟𝑒𝑙2

 ∀ 𝑖1, 𝑖2

▪ Unlikely to be satisfied in any single ranking, since relevance scores are determined by the data 
and the query, while the attention is strongly influenced by position bias.  

▪ If multiple items are similarly relevant, yet obviously cannot occupy the same ranking position

Idea: Consider a sequence   of rankings and asks that an item 
receives cumulative attention proportional to its cumulative relevance

𝜌1, 𝜌2,  …𝜌𝑚 
 13



Equity of amortized attention [BGW18]

Equity of amortized attention: A  sequence   of rankings offers 
amortized equity of attention if each item receives cumulative attention 
proportional to its cumulative relevance, i.e.:

𝜌1, 𝜌2,  …𝜌𝑚 

∑𝑚
𝑙=1 𝑎𝑙

1

∑𝑚
𝑙=1 𝑟𝑒𝑙𝑙

1
  =

∑𝑚
𝑙=1 𝑎𝑙

2

∑𝑚
𝑙=1 𝑟𝑒𝑙𝑙

2
∀ 𝑖1, 𝑖2  

• allows  to permute individual rankings so as to satisfy fairness requirements over time. 

Unfairness: How much a sequence  violates equity? 
KL-divergence between the empirical distribution A of attention and the 
empirical distribution Rel of relevance   

𝜌1, 𝜌2,  …𝜌𝑚 

! )𝑢𝑛𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠(𝜌1, 𝜌2,  …𝜌𝑚) =
𝑁

∑
𝑗=1

𝑚

∑
𝑙=1

𝑎𝑙
𝑗 −

𝑚

∑
𝑙=1

𝑟𝑒𝑙𝑙
𝑗

𝐴𝑗 𝑅𝑒𝑙𝑗
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Definition of fairness in ranking (summary)

Set-based  
Fairness constraints 
Cumulative-based metrics 
▪ normalized discounted difference 
▪ Normalized discounted ratio 
▪ Normalized discounted KL-divergence 
All group-based  

Exposure based 
Group-based 
▪ Demographic parity 
▪ Disparate impact  
▪ Disparate treatment 
Individual 
▪ Equity of attention 
Amortized (over time) 
▪ Amortized equity of attention

 15



Achieving fairness

Ranking/ 
Recommendation 

Algorithm
Ranked Output Data

Methods for achieving fairness in ranking and in recommenders can be 
distinguished as: 

Pre-processing: Transform 
the data so that any 
underlying bias or 
discrimination is removed 

In-processing: modify 
existing or introduce new 
algorithms that result in 
fair rankings and 
recommendations

Post-processing: treat the 
algorithms for producing 
rankings and 
recommendations as black 
boxes and modify their 
output to ensure fairness

 16



Pre-processing

Ranking 
Algorithm

Ranked Output Data

Generic techniques, we will come back to this in the recommender part of this 
tutorial

 17

Pre-processing



In-processing

Ranking 
Algorithm

Ranked Output Data
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In-processing

▪ Learning to rank 
▪ Linear ranking function



In-processing: Learning to rank algorithms

▪ Learning to rank obtains a ranking function f that is learned 
by solving a minimization problem with respect to a loss 
function which most often is a measure of accuracy with 
respect to the training data  

▪ Training data may be pair of items, item-scores, ranked lists

General approach: Extend the loss function by adding 
an extra term to ensure fairness

 19



In-processing: extending the loss function in learning to rank

Extends the ListNet learning to rank framework 
▪ List-wise 
▪ Training set: A query q and a list of documents ordered by their relevance to q 
▪ Learn a ranking function f that minimizes a loss function   that measures the 

extent to which the ordering   of documents induced by f for a query differs from the 
ordering   in which the documents appear in the training set for this query.  

𝐿𝐿𝑁
�̂�

𝑟 

The DELTR approach [ZDC20]

! )𝐿𝐷𝐸𝐿𝑇𝑅(𝑟(𝑞), �̂�(𝑞)) =  𝐿𝐿𝑁(𝑟(𝑞), �̂�(𝑞)) + 𝛾 F(�̂�(𝑞)

▪ γ depends on desired trade-offs between ranking utility and fairness

▪ As a measurement of fairness democratic parity based on exposure is used

𝐹(𝑟(𝑞)) = max(0,  𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺0 𝑃�̂�(𝑞)) − 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒(𝐺1 𝑃�̂�(𝑞)))2

o squared hinge loss: a differentiable loss function that prefers rankings in which the exposure of 
the protected group is not less than the exposure of the non protected group but not vice versa

unfairness term
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In-processing: learning fair representations 

Extend learning algorithm for fair classification [ZWS+13] 
Basic idea: 
▪ Introduce an intermediate level Z between the input 

space X that represents individuals and the output 
space Y that represents classification outcomes  

Z: fair representation of X 
• best encodes X and  
• obfuscates any information about membership in the 

protected group 

Z is a multinomial random variable of size k where each of the k values represents a 
prototype (cluster) in the space of X.  

X Z Y
Classification outputInput: individuals Fair 

representation
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In-processing: learning fair representations 

A learning system that minimizes the loss function

Statistical parity

X Z Y
Classification outputInput: individuals Fair 

representation

Accuracy

𝐿 =  𝐴𝑥𝐿𝑥 +  𝐴𝑧𝐿𝑧 + 𝐴𝑦𝐿𝑦
Prediction based on the 
representation should be 
accurate

Distance from points in X 
to their representation in Z 
should be small

Quality of the encoding Fairness

Statistical parity

! , !   hyper-parameters that control the trade-off among the three 

objectives

𝐴𝑥 𝐴𝑧 , 𝐴𝑦

!  �𝑃 (𝑧 = 𝑘 𝑥  ∈ 𝐺+) = 𝑃 (𝑧 = 𝑘 |  𝑥 ∈ 𝐺−) ∀ 𝑘
The probability that a random element that belongs to the protected group of X maps to a particular prototype of Z is equal to the 
probability that a random element that belongs to the non-protected group of X maps to the same prototype
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In-processing: learning fair representations 

Modify the loss function to work for ranking [YS17]

X Z Y
Ranking outputInput: individuals Fair 

representation

Ranking accuracy

𝐿 =  𝐴𝑥𝐿𝑥 +  𝐴𝑧𝐿𝑧 + 𝐴𝑦𝐿𝑦
Distance between the 
ground truth ranking 
and  
the estimated ranking 
should be small

Distance from points in X 
to their representation in Z 
should be small

Quality of the encoding Fairness

Statistical parity

Distance used:  
▪ average per-item score difference between the ground ruth ranking and the estimated 

ranking 
Other: 
▪ position accuracy (per-item rank difference), 
▪ Kendall-τ distance, and  
▪ Spearman and Pearson’s correlation coefficients
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In-processing: adjusting the weights in ranking functions [AJS19]

For each item i, d scoring attributes {i[1], i[2], …, i[d]} 
Linear ranking functions that use a weigh vector w = { } to 
compute a utility (goodness) score for each item 

  

𝑤1, 𝑤2,  …,  𝑤𝑑

𝑓(𝑖) =  
𝑑

∑
𝑗=1

𝑤𝑗𝑖[𝑗]

Given a function f  with weights w = { }, find a 
function   with weight vector   s.t. 

cos(  is minimized, and  
!  is fair

𝑤1, 𝑤2,  …,  𝑤𝑑
𝑓∗ 𝑤∗ = {𝑤∗

1 ,  𝑤∗
2 ,  …,  𝑤∗

𝑑}
𝑤, 𝑤∗ )

𝑓∗
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Post-processing

Ranking 
Algorithm

Ranked Output Data

 25

Post-processing

▪ Generative process 
▪ Constraint optimization



Post-processing: generative process 

Input: a ranking and a fairness parameter f,   that 
specifies the desired relative fairness of the two groups [YS17] 
Output: a new ranking based on f

0  ≤  𝑓  ≤  1, 

Start with an empty list 
For each position j in the new ranking, perform a Bernoulli trial with 
probability f  
           If the trial succeeds,  
 the best available item from the protected group is selected;  
           else,  
 the best available item from the non-protected group is selected.  

f = 1 All items in the protected group precede all items in the non-protected group

f = 0 All items in the non-protected group precede all items in the protected group

f Items in the protected group are preferred over items in the non-protected group

f All items in the non-protected group are preferred over items in the protected group
 26



Post-processing: generative process 

Start with an empty list 
For each position j in the new ranking, perform a Bernoulli trial with probability f  
           If the trial succeeds,  
 the best available item from the protected group is selected;  
           else,  
 the best available item from the non-protected group is selected.  

Rank ID Group Score

1 x299 0.56

2 x78 0.55

3 x45 0.45

4 x329 0.44

5 x23 0.44

6 x981 0.25

7 x665 0.23

8 x724 0.18

9 x87 0.16

10 x232 0.15

Rank ID Group Score

1 x78 0.55

2 x23 0.44

3 x87 0.16

4 x232 0.15

5 x299 0.56

6 x45 0.45

7 x329 0.44

8 x981 0.25

9 x665 0.23

10 x724 0.18

Rank ID Group Score

1 x78 0.55

2 x299 0.56

3 x23 0.44

4 x45 0.45

5 x87 0.16

6 x329 0.44

7 x232 0.15

8 x981 0.25

9 x665 0.23

10 x724 0.18

f = 1 f  >  0.5

Property: the relative order 
of two items that belong to 
the same group is not 
changed 
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Post-processing: generative process

Fair* presents a statistical test for this generative 
model that given a ranking determines the probability 
that the ranking was generated by the model 
[ZBC+17]: 

Given that at a specific position we have seen a specific number of 
items from each group, a one-tailed Binomial test is used to compare 
the null hypotheses that the ranking was generated using the model 
with parameter f∗ = f, or with f∗ < f, which would mean that the 
protected group is represented less than desired. 
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Post-processing: Constraint optimization problem

Given a query q, a utility definition    of a ranking r and a fair ranking 
definition, find ranking r that

𝑈(𝑟 𝑞)

𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑈(𝑟 𝑞)
s.t. r is fair

If unfairness measure instead of condition
Given a query q, a utility definition    of a ranking r and a 
fair ranking measure F, produce a ranking   such that that:

𝑈(𝑟 𝑞)
�̂�

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥�̂�𝐹(�̂� 𝑞)
s.t. 

!  distance(𝑈(�̂� 𝑞), 𝑈(𝑟, 𝑞)) ≤ 𝜃)  29

Many variants



Post-processing: LP optimization [SJ18]

𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑢
𝑡𝑃 𝑣

s.t. !  
         
       !  

       !  is fair

  1𝑇𝑃 =  1𝑇

 𝑃 1 =  1
0  ≤  𝑃𝑖,𝑗  ≤ 1

𝑃 

Given utility vector u, position importance vector v, find 
probabilistic ranking P

P is a doubly 
stochastic 
matrix
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Amortized individual fairness

Given a ranking sequence  ,  produce a ranking sequence 
 so as to minimize unfairness subject to a constraint in utility 
(quality) loss

𝜌1, 𝜌2,  …𝜌𝑚

𝜌1∗, 𝜌2∗,  …𝜌𝑚∗ 

Offline version

minimize     
𝑁

∑
𝑖=1

|𝐴𝑖−𝑅𝑒𝑙𝑖 |
subject to     

  
𝑁𝐷𝐶𝐺(𝜌𝑗)
𝑁𝐷𝐶𝐺(𝜌𝑗∗) ≥ 𝜃  ∀ 𝑗

Post-processing: Constraint optimization (amortized fairness [BGW18])
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Given the ranking sequence  , seen so far, reorder the current 
ranking   so as to minimize the unfairness seen so far subject to a constraint in 
utility (quality) loss of the current ranking

𝜌1, 𝜌2,  …𝜌𝑙−1

𝜌𝑙

Online version

minimize     
𝑁

∑
𝑖=1

(𝐴𝑙−1
𝑖 + 𝑎𝑙

𝑖) −  (𝑅𝑒𝑙𝑙−1
𝑖 + 𝑟𝑒𝑙𝑙

𝑖) |
subject to     

 
𝑁𝐷𝐶𝐺(𝜌𝑙)
𝑁𝐷𝐶𝐺(𝜌𝑙∗) ≥ 𝜃

Use Integer Linear Programming (ILP) to solve the online optimization 
problem:  
Introduce   decision variables  set to 1 if item i is assigned to the 
ranking position j, and 0 otherwise.

𝑁2 𝑋𝑖,𝑗  

Post-processing: Constraint optimization (amortized fairness [BGW18])
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Post-processing: Constraint optimization (ranking maximization [CSV18])

Extend the following ranking maximization problem 

Given m items, n ranking positions,   and values   of placing item i in 
ranking position j, 
Find an assignment of the items to each of the m position, such that the total value 
is maximized

𝑛 ≪ 𝑚, 𝑾𝒊𝒋

Equivalent to maximum weigh matching
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Post-processing: Constraint optimization (ranking maximization [CSV18])

Fairness constraints as s an upper bound   and  a lower bound   on the 
number of items with property l that are allowed to appear in the top k 
positions of the ranking

𝑈𝑙𝑘 𝐿𝑙𝑘

Constrained ranking maximization problem: Let the n x m assignment matrix X 
 set to 1 if item i is assigned to the ranking position j, and 0 
otherwise.
with 𝑋𝑖,𝑗  

𝑋 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝑊𝑖,𝑗𝑋𝑖,𝑗

s.t. X satisfies all fairness constraints 

▪ Hardness 
▪ Approximation algorithms

 34



Ensuring fairness in ranking (summary)

In-processing 
Learning to rank 
▪ Extent the objective function 
▪ Introduce fair representations 
Linear preference functions 
▪ Adjust the weights 

Post-processing 
Generative process 
Constraint optimization problem 

Approaches depend both on the  
▪ Definition of fairness 
▪ Ranking algorithm

 35



Fair vs diverse rankings

Diversity in ranking different objectives [DJP+17, PTF+17] 

▪ Cover different user intents as well address query ambiguity 

▪ Make results more informative, interesting and engaging by 
avoiding redundancy, support serendipity and novelty
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Multi-sided Fairness 

Recommendations for different stakeholders:  
● Consumers of recommendations  
○ Recommenders care only for consumers fairness  

■ A credit card company recommending consumer credit offers - No producer-
side fairness issues since the products are coming from the same bank 

● Providers/producers of data items to be recommended 
● System owners   
● Regulators/auditors  
○ Decision making for data scientists, ML researchers, policymakers and 

governmental auditors  

Stakeholders have a varying level of familiarity and expertise with the system 
and the underlying technologies

[B17,TP+19]
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Multi-sided Fairness in Recommenders 

Providers/producers of data items to be recommended  
● Fairness needs to be preserved for the providers only  

Example:  
Interest in ensuring market diversity and avoiding monopoly domination  
● Online craft marketplace Etsy: the system wishes to ensure that new 

entrants to the market get a reasonable share of recommendations even 
though they have fewer shoppers than established vendors 

Consumers vs Producers fairness:  
Producers fairness is passive -  Producers do not seek out recommendation 
opportunities but rather wait for users to come to the system and request 
recommendations  
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Multi-sided Fairness in Recommenders 

Can a recommender requires fairness for both consumers and providers?  

Consider any domain in which both consumers and providers can belong to 
protected groups 
● A rental property recommender  
○ The recommender may treat minority applicants as a protected class and 

wish to ensure that they are recommended properties similar to white 
renters  

○ The recommender may wish to treat minority landlords as a protected 
class and ensure that highly-qualified tenants are referred to them at the 
same rate as to white landlords 

● Employment scenario 
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         Ensuring Fairness in Recommenders



Ensuring Fairness in Recommenders 

Fairness methods: Methods for achieving fairness in recommendations can be 
distinguished between:  

● Pre-processing  
○ Target at transforming the data so that any underlying bias or 

discrimination is removed  
● In-processing  
○ Target at modifying existing or introducing new algorithms that result in 

fair recommendations, e.g., by removing bias 
● Post-processing  
○ Treat the algorithms for producing recommendations as black boxes 
○ To ensure fairness, modify the output of the algorithm

 7



Pre-processing Methods

Pre-processing methods modify the input to the recommender:  

● Sampling [CD+16]  
● Re-weighting [KC11] 
○ Generate weights for the training examples in each (group, label) 

combination differently, to ensure fairness before classification 

Data Recommender 
Algorithm

Recommendations 
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Pre-processing Methods

● Representation learning 
○ Learn a probabilistic transformation that edits the attributes and labels in 

the data with group fairness, individual distortion, and data fidelity 
constraints and objectives [CW+17] 

○ Find a latent representation that encodes the data well but makes 
unclear information about protected attributes [ZW+13] 

● Disparate impact remover  
○ Edit attribute so that the marginal distributions based on the subsets of 

an attribute with a given sensitive value are all equal [FF+15] 
○ Database repair [SR+19]  

● Antidote data 
○ Add more data to the input of the recommender to improve fairness with 

minimum accuracy loss [RG+19]
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In-processing Methods

In-processing methods design fairness-aware algorithms, that is, algorithms 
that produce fair recommendations. E.g.:  

● Use matrix factorization [YH17] 
● Alter the objective of the algorithm to emphasize fairness, typically by 

adding regularization [KA+18, KA+18b] 
● Incorporate randomness in variational autoencoders recommenders 

[BS19]

Data Recommender 
Algorithm

Recommendations
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The STEM Example 

Recommendation in education in science, technology, engineering, and 
mathematics topics - STEM 

● 2010 - Women accounted for only 18% of the bachelor’s degrees awarded in 
CS 

● The underrepresentation of women causes historical rating data of CS 
courses to be dominated by men 

● The learned model may underestimate women’s preferences and be biased 
toward men 

● If the ratings provided by students accurately reflect their true preferences, 
the bias in which ratings are reported leads to unfairness 
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The STEM Example 

Two forms of underrepresentation 

● Population imbalance: different types of users occur in the dataset with 
different frequencies 
○ Significantly fewer women succeed in STEM than those who do not; 

however more men succeed in STEM than those who do not 

● Observation bias: certain types of users may have different tendencies to 
rate different types of items  
○ Women are rarely recommended to take STEM courses, there may be 

significantly less training data about women in STEM courses 
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USE MF & Count Fairness

Value unfairness: Count inconsistency in estimation errors across the user types  
● When one class of users is given higher or lower predictions than their true 

preferences 
○ Male students are recommended STEM courses when they are not interested in 

STEM, while female students not being recommended even if they are interested 

Absolute unfairness: Count inconsistency in absolute estimation error across user 
types  
● A single statistic representing the quality of prediction for each user type 

● If female students are given predictions 0.5 points below their true preferences 
and male students are given predictions 0.5 points above their true preferences, 
there is no absolute unfairness 
○ One type of user has the unfair advantage of good recommendation, while the 

other user type has poor recommendation

[YH17]
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USE MF & Count Fairness

Underestimation unfairness: Count inconsistency in how much the predictions 
underestimate the true ratings 
● Missing recommendations are more critical than extra recommendations  

○ A top student is not recommended to explore a topic he/she would excel in  

Overestimation unfairness: Count inconsistency in how much the predictions 
overestimate the true ratings 
● Users may be overwhelmed by recommendations, so providing too many 

recommendations would be especially detrimental → big evaluation time  

Non-parity unfairness: Count the absolute difference between the overall average 
ratings of disadvantaged users and those of advantaged users

[YH17]
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USE MF & Count Fairness

Traditionally, the matrix-factorization targets at minimizing a regularized, 
squared reconstruction error 

The above fairness metrics are used to augment the learning objective of MF, by 
helping reducing discontinuities in the objective, making optimization more 
efficient 

[YH17]
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The Regularization Approach  

Random variables X for users, Y for items and R for recommendation outcomes  
Standard recommendations 

In addition: sensitive feature S, i.e., information to be ignored in the recommendation 
process (e.g., user’s gender, or item’s popularity)  
Standard Recommendations             →  Independence-enhanced recommendations  
Dataset: D = {(xi, yi, ri)}  → Dataset: D = {(xi, yi, ri, si)}  
Prediction function: r(x, y)            → Prediction function: r(x, y, s) 

The goal is to achieve: Recommendation (or statistical) independence  

● No information about a sensitive feature influences the outcome  
● Recommendations are selected so as to satisfy a recommendation independence 

constraint 

[KA+18, KA+18b]
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The Regularization Approach

Adopting a regularizer imposing a constraint of independence while training a 
recommendation model  

ΣDloss(ri, r(xi, yi, si)) - ηind(R, S) + λreg(Θ) 

● loss: empirical loss 
● η: independence parameter - control the balance between independence and 

accuracy  
● ind: independence term - a regularizer to constrain independence  
○ The larger value indicates that recommendation outcomes and sensitive 

values are more independent 
● λ: regularization parameter  
● Θ: L2 regularizer 
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The Regularization Approach

Several alternatives for the independence term  

The regularizer to constrain independence 

  

● Mutual information with histogram models  
● Mean matching  
○ Matching means of predicted ratings for distinct sensitive groups  

● Mutual information with normal distributions  
● Distribution matching with Bhattacharyya distance
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The Regularization Approach

A sensitive variable is added to a recommendation model so that it satisfies an 
independence constraint 
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Randomness in VAE Recommenders 

Decoder: The estimated output is compared with labels and propagates back  

Explore the probability distribution learned in the training phase for varying 
ranking position in a collaborative manner

Encoder: The input is 
mapped to a latent space 
(normal distributions) 
through hidden layers  

Sampling Phase: Samples 
are drawn from the the 
distributions propagate to 
decoder  

[BS19]



Post-processing Methods

Post-processing methods modify the output of the recommender 
algorithms to ensure fairness:  

● Calibrated recommendations [S18]

Data Recommender 
Algorithm Recommendations 
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Calibration Method 

Results are fair if they achieve fair representation  
● Results are evenly balanced, reflect population, user historical data 

Re-ranking, aka post-processing 

I* = argmaxI (1-λ)s(I) - λCKL(p, q(I))  

● λ determines the trade-off between accuracy and calibration  
● s(I): the summation of the predicted relevance recommendation scores  
● CKL: Kullback-Leibler divergence, i.e., how similar are p and q?  

[S18]
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       Post-Processing Methods:  
Fairness in Group Recommenders 



Fairness in Group Recommendations

Typically, recommenders provide suggestions adapted to the preferences of a 
single user 

However, many times, the recommended data items are consumed by a group 
of users 

● A travel with friends  
● A movie to watch with the family during Christmas holidays  
● Music to be played in a car for the passengers 

But: users in a group may be heterogeneous 
● People with potentially different interests and preferences

 24



Fairness in Group Recommendations

Most works on group recommenders aim to maximize the group’s overall 
satisfaction with the recommended list  

This way, there could be one or more users that do not like the items in the list 

● By using the average method, the opinion of some users can be lost  

Need for fair group recommendations!  

Intuitively: fairness attempts to minimize the feeling of dissatisfaction within 
group members 
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Individual Utility, Social Welfare & Fairness

Assume a measure of quantifying the satisfaction, or utility, of a user (in a 
group) given a list of recommendations  

● How relevant the K recommended items are to the user  

Group utility, or social welfare: ways for averaging user utilities 

Fairness: the balance of user utilities inside the group, i.e., fairness can be the 
minimum user utility 

● Intuitively, a list that minimizes the dissatisfaction of any user in the group 
can be considered as the most fair 

In this sense, fairness enforces the least misery principle among users utilities  

[XM+17]



Individual Utility

Assume a user u in a group g and a set of items I (|I| = K) recommended to g  

The individual utility U(u, I) : U×I → [0, 1] of the relevances rel(u, i), where i ∈ 
I, is defined as:   

I(u,K) denotes the set of items which are among the top-K favourite items of 
user u  
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Social Welfare & Fairness

Aggregate individual utilities as social welfare 

The Social Welfare SW(g,I), is the overall utility of all users in g given group 
recommendations I  

Fairness reflects the comparison between the utilities of users in the group 
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Ensuring Fairness

Maximize social welfare and fairness 

Use the following scheme to assign weights to each objective:  

λ · SW (g, I) + (1 − λ) · F (g, I)  

Greedy algorithm: Select an item that achieves the highest fairness (above 
function) when it is added to the current recommendation list  

● Time-efficient, because of one item per round  

Alternatives via integer programming techniques
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Fairness via Pareto

Items in space: each dimension corresponds to a 
group member u and its coordinate equals the rank 
rel(u,i) of the item i for u 

Top-6 for u1: i2, i3, i5, i1, i6, i4, and for u2: i1, i4, i2, 
i3, i6, i5 

● Item i1 ranks 4th for u2 and 1st for u1, and is thus 
represented by the point (4,1) 

● E.g., i1 is clearly better than another i4 

We say that i dominates i′ for a group g, if for each user, item i ranks at least 
as good as i′, and there exists at least one user for whom i ranks better: 

∀u ∈ g : rel(u,i) ≤ rel(u,i′), and ∃u′ ∈ g : rel(u′,i) < rel(u′,i′) 

[S19] 
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Fairness via Pareto

The top items not dominated by any other item are called Pareto optimal 

● Items i1 and i2 comprise the set of Pareto optimal items in the example 

N-level Pareto optimal: contain items dominated by at most N − 1 other items  

● Thus, the top-N choices are within the N-level Pareto optimal set  

● E.g., i3 is 2-level Pareto optimal as it is dominated by only i2
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Ensuring Fairness

Impractical to identify the exact set of N-level Pareto optimal items 

● It needs the ranks of each item to each user  

Approximation:  

● Request top-N′ recommendations for each user in the group, and take their 
union 
○ N′>N is the largest number of items the system can recommend  

● Identify the N-level Pareto optimal items among the N′ ones 
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m-Proportionality

Package-to-group recommendations 

For a user u and a package P, P is m-proportional to u, if there exist at least m 
items in P that u likes 
For a group g, the m-proportionality of P for g is defined as:  

|gP| / |g| 
where gP is the set of users in g for which P is m-proportional 

[SQ17]
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m-Envy-Freeness

Package-to-group recommendations 

A user u in g is envy-free for an item i in P, if rel(u,i) is in the top-∆% of the 
preferences in the set {rel(v,i) : v ∈ g}  
A package P is m-envy-free for u, if u is envy-free for at least m items in P 

For a group of users g and a package P, the m-envy-freeness of P for g is defined 
as:  

|gef| / |g| 
where gef is the set of users in g for which P is m-envy-free 

[SQ17]



Ensuring Fairness

Fairness maximization 

Construct P greedily  
● In rounds, add to P the item that satisfies the largest number of non-

satisfied users  
○ Maximize: fG(P,i) = |SatG(P∪{i}) \ SatG(P)|, at each round  

where SatG(P) denotes the users satisfied by P 
With category constraints:  
● When selecting an item from a specific category, we remove the items of 

this category from the candidate set 
With distance constraints:  
● Consider as candidate items only the items that when added to the existing 

solution satisfy the distance constraints 
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(Un)Fairness in Sequential Recommendations 

5 friends // watch a movie // top-10 // 5 iterations 

Count satisfaction for each member: How relevant are the group list’s items, 
over the best items for each group member  

● User 4 has a low satisfaction score: almost no interesting recommendations 

The recommender is unfair to him/her - unfairness continues throughout the 5 
iterations 

[SN+20]
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Satisfaction & Disagreements 

Average for group satisfaction  

Disagreements in the group: difference in the satisfaction scores between the 
most satisfied and the least satisfied user in the group

Satisfaction per iteration: directly compare 
the user’s satisfaction from the group 
recommendations with the ideal case for that 
user  

● pj(ui,dz): preference score of ui for item 
dz at iteration j 
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Fairness in Sequential Recommendations 

Sequential hybrid aggregation method  

A weighted combination of the avg 
and min aggregations 

Dynamic α in each iteration 

Subtract the min satisfaction score of 
the group members in the previous 
iteration from the max score

● For an extremely unsatisfied user in a previous iteration  
○ α takes a high value and promotes that user’s preferences 

● For equally satisfied users at the last round  
○ α takes low values, use a close to the avg aggregation, everyone is treated as an equal
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Fairness in Sequential Recommendations 

User 4: In the first iteration has a low satisfaction score, and in the second has a higher one 

● Improvement over the previous results, where User 4 was always the least satisfied 
member of the group

A group member that was not satisfied 
in the previous iteration, is satisfied in 
the next

 39
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         Fairness as a Program Property



Program Fairness

● Fairness Verification 
● Fairness-Aware Programming



Program Fairness Verification

● Is a given program P fair, under some definition of fairness?  
● How fair/unfair is P?

The goal is to  

● analyze a given decision-making program and  
● construct a proof of its fairness or unfairness



Program Fairness Verification

Challenges 

● What class of decision-making programs can our program model 
capture? 

● How can we define the set of possible inputs to the program in a 
way that is useful and amenable to verification? 

● How can we describe what a fair program is? 

● How can we fully automate the verification process?

[CG20] [KM+20][AV19][GB+17] 



Program Fairness Verification

1. Modeling Input of the Program 
● Dataset 
● Population Model M (a probabilistic program) 

1. Fairness Properties  
There are many ways to define when and why a program is 
fair  
or unfair.   
An example of group fairness:

i.e., the algorithm is just as likely to hire a 
minority applicant (m) as it is for other, non-
minority applicants



Program Fairness Verification

3. Proving Fairness 
● For simple definitions, such as group fairness, the 

verification problem reduces to computing the 
probability of a number of events with respect to the 
program and the population model.  

● For more complex definitions, such as individual 
fairness, proving fairness requires more complex 
reasoning involving multiple runs of the programs (a 
notoriously hard problem). 

Additionally, producing a human readable proof might be 
challenging 



Fairness-Aware Programming 

Make fairness a first-class concern in programming.  

● Developers can state fairness expectations natively in their code 

● A runtime system monitors decision-making and reports violations of 
fairness.

[AV19]

● This approach is analogous to the notion of assertions.  
● However, detecting the violation of fairness assertions cannot be done  

through a single execution 



Fairness-Aware Programming 

Example: movie recommendation 

Train a recommender that, given a user profile, recommends a single movie, for 
simplicity.  

Goal: Ensuring that male users are not isolated from movies with a strong female 
lead. 

@spec(pr(femaleLead(r)|s = male) > 
0.2) 

The above specification ensures that for male users, the procedure recommends 
a movie with a female lead at least 20% of the time.



Fairness-Aware Programming 

Runtime analysis 

● To determine that a procedure f satisfies a fairness specification φ, we need 
to maintain statistics over the inputs and outputs of f as it is being applied.  

● We compile the specification φ into runtime monitoring code that executes 
every time f is applied, storing aggregate results of every probability event 
appearing in φ.  

For example:  
@spec(pr(femaleLead(r)|s = male) > 
0.2)

Here, the monitoring code would 
maintain the number of times the 
procedure returned true for a movie with 
a female lead. 



Fairness-Aware Programming 

Runtime analysis 

● To determine that a procedure f satisfies a fairness specification φ, we need 
to maintain statistics over the inputs and outputs of f as it is being applied.  

● We compile the specification φ into runtime monitoring code that executes 
every time f is applied, storing aggregate results of every probability event 
appearing in φ.  

Challenge:  
In the case of individual fairness, the runtime system has to remember all 
decisions made explicitly, so as to compare new decisions with past ones.



         Fairness: Beyond Ranking and Recommenders



Some examples

- Cache allocation in multi-tenant environments (e.g., SPARK) [KF+17] 
- Multiple resource allocation [GZ+11]  
- Scheduling [GM+09] 



Fairness in resource allocation

Desirable properties: 

1. Sharing incentive: Each user should be better off in the shared allocation setting than she 
would expect from simply having access to all of the resources with probability 1/N, where 
N the number of users. 

1. Pareto efficiency: It should not be possible to increase the allocation of a user without 
decreasing the allocation of at least another user. This property is important as it leads to 
maximizing system utilization subject to satisfying the other properties. 

1. Strategy-proofness: Users should not be able to benefit by lying about their resource 
demands. This provides incentive compatibility, as a user cannot improve her allocation by 
lying.  

1. Envy-freeness: A user should not prefer the allocation of another user. This property 
embodies the notion of fairness.



Example: ROBUS

Fairness Model 

● Pareto Efficiency: An allocation is Pareto-efficient if no other allocation simultaneously improves the 
expected utility of at least one tenant and does not decrease the expected utility of any tenant. 

● Sharing Incentive: For N tenants, each tenant should expect higher utility in the shared allocation 
setting than she would expect from simply having access to all of the resources with probability 1/N

ROBUS 

Cache allocation that can speed up a multi-tenant workload while 
guaranteeing fairness in terms of the tenants’ performance   

[KF+17] 



Example: ROBUS

● Queries submitted by tenants to queues are 
processed in batches of a fixed time interval.  

● Queries within a batch are optimized 
together and are scheduled for execution at 
the same time.

prototype implemented on Spark



Conclusions

1. Many different fairness definitions.  

● How do fairness definitions fare?  

● Which one is suitable for which context? 

● How do people perceive fairness in different contexts? 

[SH+20][HR+18][PR+17]



Conclusions

2.    Different approaches at different stages  
(pre-processing, in-processing, post-processing, verification) 
  

● Which one fairs better when?  

● What combinations of methods would work best? 



Conclusions

3.   Applying fairness in practice  
  

  
● What are the challenges (and hopes) ?  

● How to combine fair desiderata with other optimization  objectives?  

● How to evaluate ? 

[GA+19]

Case: Online A/B tests in LinkedIn Talent Search of applying a fair framework for 
achieving representative ranking showed tremendous improvement in the fairness 
metrics (nearly three fold increase in the number of search queries with 
representative results) without statistically significant change in the business 
metrics, which paved the way for deployment to 100% of LinkedIn Recruiter users 
worldwide.



“Fair” has many meanings

thank you
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